SCR Impact on Mercury Speciation in Coal-Fired Boilers C.W. Lee and Ravi K. Srivastava U.S. Environmental Protection Agency National Risk Management Research Laboratory Air Pollution Prevention and Control Division Thomas W. Hastings and Frank M. Stevens Cormetech, Inc. Poster Presentation: 2003 DOE-NETL Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NOx Control October 29-30, 2003 Pittsburgh, PA #### Background - Speciation influences emissions control - Ionic Hg²⁺ is removed easily by wet scrubbers - Volatile elemental Hg⁰ is difficult to capture - Many Selective Catalytic Reduction (SCR) units are meeting stringent NO_x regulations - Vanadia/titania (V₂O₅/TiO₂) catalyst - Ammonia (NH₃) or Urea (CH₄ON₂) reductant - SCR has an impact on mercury speciation - Limited field data in Europe and U.S. - Increase in Hg²⁺ across SCR reactor #### Factors Affecting Hg Chemistry - Apparent dependence on coal type - Higher Hg²⁺ across SCR for bituminous coal-fired boilers - Little change in Hg speciation across SCR for boilers burning sub-bituminous (Powder River Basin) coal - Possible effects of SCR system - Changes in flue gas chemistry (NO_x, NH₃, Cl₂, SO₃) - Catalytic oxidation by vanadium based catalysts - Important reactions transforming Hg⁰ to Hg²⁺ in SCR systems are not well understood #### Objectives - Identify important parameters for enhancing Hg⁰ oxidation in SCR systems - Provide scientific base for apparent coal-type dependence on SCR effect on Hg⁰ oxidation - Better understanding of the fundamentals of SCR enhanced mercury oxidation for developing multi-pollutant control strategies #### Approach - Good control on experimental variables - Bench-scale SCR reactor - Simulated combustion flue gases for bituminous and sub-bituminous coals - Modified Ontario Hydro (OH) method for speciation sampling/analysis - Lower sampling volume - Mini-impingers #### SCR Reactor System ### Bench-Scale SCR Reactor System #### Simulated Flue Gas Preheating and Mixing ### SCR Reactor ## NO_x and SO₂ Monitors #### **Experimental Procedures** - Catalyst - Cormetech commercial honeycomb catalyst (2.2 x 2.2 x 1.9 cm, 9 channels) - Space velocity 2609 hr⁻¹ at 400 cm³/min gas flow rate - Thermal pre-treatment of catalyst - Heating of catalyst overnight at 425 °C under N₂ flow - Minimize residual effect from previous experiment - Catalyst pre-conditioning - Passing SO₂ and HCl through catalyst overnight at levels for next day's experiment - Add remaining flue gas components (O₂, CO₂, H₂O, NO, NH₃, Hg⁰) before experiment #### Mercury Sampling and Analysis - OH sampling - Sampling started after NO_x reached steady state level - Two hour sampling time (0.05 m³ total sampling volume) - Measure sampling flow (400 cm³/min) every 10 min - Sampling impingers - Hg²⁺ collected by first three impingers containing KCl (1N) solution - Hg⁰ collected by one impinger containing HNO₃ (5%) and H₂O₂ (10%) solution and three impingers containing H₂SO₄ (10%) and KMnO₄ (4%) solution - Each fraction prepared/analyzed for mercury by cold vapor atomic absorption (CVAA) #### Simulated Powder River Basin Coal Combustion Flue Gas Mixtures | Test No. | P1 | P2 | Р3 | P4 | | |-------------------------------------|----------|-------------------------|----------------------------------|--|--| | Simulation | PRB coal | PRB coal
without HCl | PRB coal without NH ₃ | PRB coal without NH ₃ and NO _x | | | HCl Concentration (ppm) | 8 | 0 | 8 | 8 | | | SO ₂ Concentration (ppm) | 280 | 280 | 280 | 280 | | | NO _x Concentration (ppm) | 350 | 350 | 350 | 0 | | | NH ₃ Concentration (ppm) | 315 | 315 | 0 | 0 | | | CO ₂ Concentration (%) | 15 | 15 | 15 | 15 | | | O ₂ Concentration (%) | 3.5 | 3.5 | 3.5 | 3.5 | | | H ₂ O Concentration (%) | 5.3 | 5.3 | 5.3 | 5.3 | | | Hg ⁰ concentration (ppb) | 19 | 19 | 19 | 19 | | ### Simulated Bituminous Coal Combustion Flue Gas Mixtures | Test No. | B1 | B2 | B2 B3 | | | |-------------------------------------|----------------|--------------------|----------------------------|----------------|--| | Simulation | High Cl, low S | Medium Cl
and S | B2 without SO ₂ | Low Cl, high S | | | HCl Concentration (ppm) | 204 | 134 | 134 | 98 | | | SO ₂ Concentration (ppm) | 934 | 2891 | 0 | 3116 | | | NO _x Concentration (ppm) | 350 | 350 | 350 | 350 | | | NH ₃ Concentration (ppm) | 315 | 315 | 315 | 315 | | | CO ₂ Concentration (%) | 15 | 15 | 15 | 15 | | | O ₂ Concentration (%) | 3.5 | 3.5 | 3.5 | 3.5 | | | H ₂ O Concentration (%) | 5.3 | 5.3 | 5.3 | 5.3 | | | Hg ⁰ concentration (ppb) | 19 | 19 | 19 | 19 | | # SCR Outlet NO_x Concentration Profile ### NO_x Reduction Results | Test No. | P1 | P2 | P3 | P4 | B1 | B2 | В3 | B4 | |--|----|----|-----|----|-----------|-----------|----|-----------| | SCR Outlet NO _x Concentration (ppm) | 44 | 52 | 350 | 0 | 44 | 43 | 47 | 46 | | NO _x Reduction (%) | 87 | 85 | 0 | 0 | 87 | 88 | 87 | 87 | # SCR Outlet Mercury Speciation Results for PRB Coal Simulation Experiments # SCR Outlet Mercury Speciation Results for Bituminous Coal Simulation Experiments #### Discussion - Chlorine is critical for Hg⁰ oxidation in SCR - Low Cl and high Ca in PRB coals cause little SCR impact - Cl in bituminous coals sufficient to cause significant impact - Possible mechanisms involved over SCR catalyst - SCR catalyzed Deacon reaction: $2HCl + 1/2 O_2 = Cl_2 + H_2O$ - Chlorination reaction: $V_2O_5 + 2HCl = 2VO_2Cl(s) + H_2O$ - NO_x promotes Hg⁰ oxidation in SCR - NO_x seems to play a significant role for Hg⁰ oxidation in SCR - Chemisorption of NO_x creates active sites for Hg⁰ adsorption - Reactions of NH₃ with NO_x inhibit Hg⁰ adsorption - SO_x does not seem to play a significant role in SCR Hg⁰ oxidation under conditions tested to date - Suggests that Hg⁰ is unlikely to be oxidized by SO₃ #### **Summary and Conclusions** - Bench-scale system simulated field units closely - Achieved NO_x reduction levels similar to those in field units - Different effects of flue gases on SCR Hg⁰ oxidation - HCl provides critical chlorine source for Hg⁰ oxidation - NO_x has a significant promotional effect - SO_x has little effect under the conditions of this study - Complex interactions between Hg⁰, flue gases, and SCR catalyst result in Hg⁰ oxidation - Results provide scientific evidence for apparent coaltype effect on Hg⁰ oxidation in SCR systems #### Future Work - Effect of catalyst age - Aged samples collected in the field - Effect of catalyst formulation - Catalysts for PRB coal application - Effect of residence time - Effect of NH₃/NO_x molar ratio - Mechanistic and modeling studies #### Acknowledgement Jarek Karwowski of ARCADIS Geraghty & Miller provided extensive technical assistance for the experiments